GAS MIXTURE FLOW IN A CYLINDRICAL CHANNEL
AT INTERMEDIATE KNUDSEN NUMBERS
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A technique employing momentum equations averaged over channel section is used to obtain
the kinetic coefficients describing nonisothermal flow of a gas mixture in a capillary at in-
termediate Knudsen number (Kn =< 0.25).

_Analysis of gas mixture flow in a cylindrical channel at arbitrary values of Knudsen number is usually
based on use of a linearized kinetic equation with model BKG collision integral in the Hamel—Ochugi form
[1, 2]. The constraints ofthis model do not permit consideration of thermodiffusion effects, nor does the model
provide sufficient accuracy for determining such quantities as the thermal and diffusion slip coefficients, even
in the limit of small Knudsen numbers [3]. In {4, 5] a method was developed for calculation of kinetic coeffi-
cients for a nonisothermal mixture flow in a channel, based on averaging over the channel section a system of
moment equations obtained by linearizing the Kkinetic equation with exact Boltzmann collision integral. In [6]
this method was used to obtain expressions for a Poiseuille flow, thermocreep flow, and heat flow in a pure gas
in a cylindrical channel. The results are valid over the range 0 < Kn < 0.25. In the present study the corre~
sponding kinetic coefficients characterizing noniscothermal flow of a gas mixture in a channel will be calculated.

We will consider the slow flow of a gas mixture in a circular capillary of radius R under the action of
relative partial pressure gradient k, =p5}0 dpy,/dz and relative temperature gradient 7 = Tai dT/dz. At low
values of these gradients we may seek the distribution function in the form
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where the nonequilibrium addition to the distribution function ¢, is determined from the linearized Boltzmann
kinetic equation [7]
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indrical problem geometry we arrive at moment equations of the form
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General expressions for the moments of ugz, Parzs hygs 8 qijke and Hozijkl’ defined on the nonequilibrium por-
tion of the distribution function, are presented in [4]. In Egs. (3)-(7) [Dg); corresponds to the first approxi-
mation to the mutual diffusion coefficient of a binary mixture of o- and g-molecules [8], while the coefficients
£ wB» aqp» and by g were calculated in [9], and dg g in [4].

Far from the walls this system of equations corresponds to the well-known 20-moment Grad approxima-
tion to the distribution function [10], which when linearized relative to small values of the dimensionless mo-
ments leads to the result
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where the superscript as denotes asymptotic values of the corresponding quantity (i.e., values outside the
Knudsen layer). For a binary mixture, the expressions for these asymptotic values appearing in Eq. (9) have
the form
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Expressions for the coefficients 7, [D,, g Iy laplys and [aly can be found in [9], while those for O‘i)oz’
Al o and 6., are given in [4]. Summing Eq. (3) over o and integrating over r, we arrive at an expression for
the full v1scous stress tensor Py, valid over the entire flow region:
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The values of p,,, (r) are found by solution of Eq. (4). Substituting these values in Eq. (11) and integrating the
expression obtained over r, we obtain
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We will now obtain averaged expressions for the reduced thermal flux, the difference between the flow
component velocities, and the mean molar mixture velocity. Averaging Egs. (3), (5)~(7), and (12) over channel
section, we have
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In particular, for a binary mixture, solution of system (13)-(16) gives
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To proceed further, it is necessary to find values of the unknown moments on the channel walls, appearing
in the expressions for Lj,. As in [4, 6], we will use Loyalka's [11] approximate method.

We introduce distribution functions for incident and reflected molecules, so that &, = &%, for cyy > 0 and
by =®g for cgy < 0. Using the conventional Maxwell condition for molecule reflection on the wall for the func-

tions @3 at r =R, we have
DF (car R) = 2e*caz(a + i) + 200 pars (R) CarCas +
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where n,, is the fraction of molecules experiencing diffuse reflection on the wall.

Using Eq. (9) and the definition of pgyy» EQ. (1.9) of [4], on the channel wall, after calculating the corre-
sponding integrals with consideration of Ed. (20), we find the constant a:
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If we employ Eq. (10), the quantity a is then expressed in terms of the concentration, pressure, and temperature
gradients. Substituting this value in Eq. (20}, we find the unknown quantities on the channel wall appearing in
Lik-

According to the thermodynamics of irreversible systems [12], the relationship between flows and gra-
dients can be expressed in the form
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where <hz>-—=<qz>—§2pa<waz> is the reduced mixture thermal flux and ‘<umz>=%ya<uaz> is the mean-
&

molecular mixture velocity. After the values of Ljj are calculated and written as linear combinations of the
gradients of the corresponding thermodynamic quantities, comparison of Eq. (22) with Eqs. (17)-(19) will per-
mit establishment of the explicit form of the expressions for the coefficients Aj,. These coefficients were
obtained for a planar channel in [4]. In the case of a cylindrical channel, the values of A ;) coincide with their
values for a planar channel with a simple replacement of the channel width d by the radius R, and replacement
of the quantity 6, by (3/8)d,. Some difference occurs in the expression for Ay, which describes isothermal
Poiseuille flow of the mixture in the channel. In this case the first term has the form T R%/ 87 instead of
T,d?/127. In addition, in the sixth order term for Apm it is necessary to replace the term in parentheses

(11 = 2Tg) by (68/3 — 2T ).

The structure of the coefficients Ay is that of an expansion in some effective Knudsen number for the
mixture. This is especially convenient when we turn to the case of a pure (single-component) gas, for which
the Knudsen number is defined as Kn = 5 /pOBI/ R. Corresponding expressions for the coefficients Amm>
Amqg =Aqm: and Aqq for a pure gas, in the form of expansions up to terms proportional fothe square of the
Knudsen number, are presented in [6]. In the case of a binary mixture these coefficients depend in a complex
manner on a series of parameters characterizing the mixture. In the range of low Knudsen numbers, by limit-
ing the expansion to terms linear in Knudsen number, we arrive at results corresponding to the so-called
"viscous flow regime with slip." Then

2
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Here A' is the thermal conductivity coefficient, while ¢ and A are the viscous and thermal slip coefficients
for the binary mixture, which are given by
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The coefficients A4y, Aym> and A4q are related to diffusion processes for the mixture flow in the channel.
In particular, the difference between the average component velocities in the channel can be expressed as
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The diffusion, barodiffusion, and thermodiffusion coefficients are then related to the corresponding coefficients

Ajy as follows:

;

Dy = l\llylszoTE]; Dyoi, = AlmPoTo_1§ Dygoty = 1\1qT0—1.

In the region Kn — 0 the coefficients Dy, and a7 coincide with the conventional diffusion and thermodiffusion
coefficients in a gas mixture. Under these conditions the barodiffusion coefficient proves to be independent
of channel geometry and is defined by the expressions presented in [4, 5].

To illustrate the dependence of Dys, aps o on mixture molecular properties, Knudsen number, and the
character of molecular scattering on the walls, it is useful to consider a mixture whose components have rela-
tively similar masses and scattering sections (Am/2m < 1 and Ac/2¢ <K 1), using the solid sphere model for
the molecules. Also considering the possibility of a small difference in the molecular reflection coefficients
on the walls, after simplifying the corresponding expressions (for a mixture with y; =y, = 0.5) we obtain

D1z = [Dya)s (1 — 0.6523xKn), (23)
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As would be expected, differences between the values of these coefficients and the corresponding coeffi-
cients for a planar channel [4] occur only in terms which are of the highest order in the expansion in Knudsen
number as compared to the conventional kinetic coefficients valid at Kn < 1.

NOTATION

kg 7, relative partial pressure and temperature gradients; r, ¢, z, variables in cylindrical coordinate
system; ’uaz, hydrodynamic velocity of a~component mixture; p, . pPartial viscous stress tensor; hyy, re-
duced partial thermal flux; s i Hijkg> third- and fourth-order partial moments; R, channel radius; (hg),
{Ugz)» {Umz), reduced thermal flux, hydrodynamic velocity of a~component mixture, and mean-molecular
mixture velocity averaged over channel section; Ajk, kinetic coefficients; »,. fraction of molecules of o-
component mixture experiencing diffuse reflection on wall; Dy,, Qs Qs diffusion, barodiffusion, and thermo-
diffusion coefficients; Kn, Knudsen number; ¢, A, viscous and thermal slip coefficients of binary mixture;
A, thermal conductivity coefficient.
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WAVE PROPERTIES AND SHEAR STRESS OF A TURBULENT
BOUNDARY LAYER

Ya. A. Vagramenko UDC 532.525.2

The wave theory of turbulence [1-3] is applied to the problem of a turbulent boundary layer
near a planar wall. Preliminary results earlier published have been refined.

In a turbulent flow the statistical ensemble state of large-scale vortices is described by the equation [2]

in ¥ e

of 20
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where V2 is the Laplacian. The special representation § = @ exp ib makes it possible to obtain from (1) an
expression for the energy of motion hw and an equation for the probability flow a2 for stationary turbulence
(9a?/at = 0):
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In this case hlgrad b] =pU, w = 8b/8t. The negative term on the right-hand side of Eq. (2) reflects the
statistical aspect of vortex-particle interactions, and equals the fluctuation energy a%p U%/2. Thus,

v2a + |grad bPa® = 0 (4)
and, besides, hw = (1 + a?pU%/2. Since h =p Ulgrad b|™, it follows that

1+ a?

U |grad b|. (5)

O =

The amplitude @ coincides withthe local turbulence intensity u'/U, where u' is the fluctuation in translational
velocity. The representation of kinetic properties of vortex-particles in terms of wave characteristics im-
plies that the individual motion of vortices is expressed in terms of statistical ensemble properties, thus
forming a set of vortex~particles. The probability distribution of the amplitude @ is such that in the region
of wave existence

f a?db = 1. (6)
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